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Enantio-controlled Route to the Furofuran Lignans: the Total Synthesis of 
(-1-Sesamolin, (-)-Sesamin, and (-)-Acuminatolide 
Seiichi Takano," Takehiko Ohkawa, Shun'ichi Tamori, Shigeki Satoh, and Kunio Ogasawara 
Pharmaceutical institute, Tohoku University, Aoba yama, Sendai 980, Japan 

The first enantio-controlled route to the furofuran lignans, (-)-sesamolin, (-)-sesamin, and (-)-acuminatolide, has 
been developed starting from diethyl L-tartrate by employing an intramolecular hetero-Diels-Alder reaction as the 
key step. 

The furofuran lignans are one of the largest groups of lignans' 
whose members show a variety of biological activities.2 
Although interesting syntheses providing these natural pro- 
ducts have been developed,lJ.4 an enantio-controlled route 
has not hitherto been reported. We present here a novel 
enantio-controlled route to the furofuran type lignans starting 
from diethyl L-tartrate (1)  by employing a highly di- 
astereoselective intramolecular hetero-Diels-Alder reactions 
as the key step. 

The diol (3),f prepared from (1) and 3,4-methylenedioxy- 
cinnamaldehyde via sodium borohydride reduction of the 
acetal (2). was treated with di-isobutylaluminium hydrideh to 
afford the trio1 (4) which was selectively converted into the 
1,2-acetonide ( 5 )  in 50% overall yield. On sequential 
O-benzylation, deacetalization, and periodate cleavage, ( 5 )  

i- All new isolated compounds exhibited satisfactory analytical 
(combustion and/or high resolution mass spectrum) and spectral (i.r., 
lH n.m.r.,  and mass) data. 

gave the aldehyde (8) in nearly quantitative overall yield. 
Treatment of (8) with Meldrum's acid (2,2,-dimethyl-4,6- 
dioxo-l,3-dioxane) in methylene chloride in the presence of 
4-N,N-dimethylaminopyridine at 0 "C to room temperature 
led to spontaneous condensation and intramolecular hetero- 
Diels-Alder reaction to give the single adduct (lo), which was 
refluxed with magnesium chloride in wet dimethylacetamide7 
to afford the 6-lactone (11) with a cis-ring junction+ in 58% 

$ The lactone moiety of (11) is presumed to  possess a boat-like 
conformation with the aromatic group in bowsprit position, this is 
supported by X-ray analysis of a related compound (11; Ar = Me): 'H 
n.m.r. spectrum (CDCI,, 500 MHz) of (11) 6 2.51 [dd, J 14.6 and 9.8, 
lH, Ha@)] 2.61 (m,  lH, Hb), 2.75 [dd, J 14.6 and 6.1, 1 H, H,(cu)], 
2.83(dddd,J11.0,10.7,7.9,and5.2,1H,H,),3.52[dd,J9.8and5.2, 
lH, Hd(a)], 3.58 (m, 2H, Hs), 3.88 (ddd,J6.1, 5.5, and 4.9, lH, Hc), 
3.93 [DD, J 9.8 and 7.9, 1 H, Hd(p)], 4.57 (s, 2H, PhCH2), 4.96 (d, J 
11.0, lH, Hf), 5.90 (s, 2H, methylenedioxy protons), 6.79 (s, 2H, 
ArH) ,  6.86 (s, lH, ArH) ,  7.28-7.38 (m,  5H, Phenyl H ) .  
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overall yield (Scheme 1). The observed highly diastereoselec- 
tive formation of the adduct (10) with a cis-ring junction may 
be attributable to the preferential intervention of the endo- 
active conformer (9A) with the bulky benzyloxy group 
disposed outwards, rather than the exo-conformer (9B), 
owing to the considerable non-bonded interaction in (9B) 
between the aryl group on the dienophile and the heterodiene 
moiety .7b 
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Hydroxylation of (11) with oxidodiperoxy(pyridine)( hexa- 
methylphosphoric triamide)molybdenum (MoOPH)~.' in the 
presence of lithium hexamethyldisilazide afforded the single 
product (12) which was sequentially reduced (NaBH4), 
oxidized (NaI04) ,  and reduced (NaBH4) in the same flask to 
give the diol( l5)  in 53% overall yield. Treatment of (15) with 
toluene-p-sulphonyl chloride (1 equiv.) in the presence of 
n-butyl-lithium (2 equiv.)") generated the tetrahydrofuran 
(17) stereoselectively in 91% yield in one stage. On sequential 
debenzylation [ HZ, Pd(OH),], mesylation (methanesulphonyl 
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chloride, triethylamine), substitution (NaI, methyl ethyl 
ketone), and reductive ring opening (Zn, MeOH, room 
temperature), (17) furnished the alkene (21) in 77% overall 
yield. Under Lemiuex-Johnson conditions,ll (21) gave 
saminI2-13 (23), [(x]D24 -88.18' (c 1.1, CHC13) (lit.13 for 
(+)-enantiomer, [&ID +81.4" (c 0.5, CHCL,)}, in 97% yield, 
via (22), the enantiomer of which was obtained from naturally 
occurring (+)-sesamolin12.13 (24) as a degradation product. 

Treatment of (23) with sesamol (3,4-methylenedioxy- 
phenol) in boiling benzene in the presence of pyridinium 
toluene-p-sulphonate (PPTS) furnished (-)-sesamolin12 (24), 
m.p. 94.5-95 "C, [a]D23 -216.44' (c 0.61, CHC13) (lit.12 for 
(+)-enantiomer, m.p. 93-94 "C, [(u]D +212" (CHCI,)}, in 
48% yield. Moreover, (23), on treatment with an excess of 
3,4-methylenedioxyphenylmagnesium bromide, followed by 
treatment of the resulting crude diol with PPTS in refluxing 
methylene chloride, furnished (-)-sesaminl4 (25), m.p. 
119.5-121.OoC, [a]# -64.51" (c 1.05, CHC13) (lit.14 m.p. 

which was isolated from Hydrocotyle plants. On the other 
hand, oxidation of (23) with Fetizon's reagent15 gave acumi- 
natolide'h (26), m.p. 118--119'C, [a]D2' -103.82' (c 0.31, 
CHC13)$ (lit.16 m.p. 118"C, [aID24 -37" (c 0.11, CHC13)},.in 
87% yield, which was recently isolated from Australian 
Helichrysum species. Its absolute structure was not deter- 
mined previously, but we assume that it is as depicted in 
Scheme 2. 

123-124.5"C, [ a ] ~ ~ ' )  -64.5" (C 1.08, CHCl,)}, in 54% yield, 
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9 Although there is a considerable difference between the optical 
rotation values for the synthetic and natural products, their ' H  n.m.r. 
spectra are virtually identical. 
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